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The q-state clock gauge glass model is studied to see the effect of discreteness on the Kosterlitz-Thouless
�KT� transition and the ferromagnetic �FM� critical phenomenon in random systems. The nonequilibrium
relaxation analysis is applied. In two dimensions, the successive transitions of paramagnetic �PM�, KT, and FM
phases are investigated along the Nishimori line for q=6, 8, 10, 12, 14, 16, and 1024 �recognized as �� cases.
For the upper critical temperature, it is found that the transition temperature is almost the same as in the
continuous case for all q values. The lower transition temperature is found to be proportional to 1 /q2. In three
dimensions, the critical behavior of the PM-FM transition is studied along the Nishimori line for q=6, 8, 16,
and 1024 cases. It is found that the spin discreteness is irrelevant, and the transition belongs to the same
universality class as in the �continuous� XY case.
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I. INTRODUCTION

In the last decades, the physics of frustrated and disor-
dered systems has been one of most fascinating subjects for
theorists and experimentalists. The gauge glass �GG� is a
typical example in this category and has attracted much at-
tention. It describes thermodynamics of various systems such
as disordered magnets with random Dzyaloshinskii-Moriya
interaction �1�, Josephson-junction arrays with positional dis-
order in a magnetic field �2�, and so on. In the weakly dis-
ordered regime in two dimensions �2Ds�, there has been a
controversy about the existence of reentrant transition from
the Kosterlitz-Thouless �KT� phase �3� to non-KT one
�1,2,4–15�. With all these studies, the instability of the KT
phase against a small disorder has been pointed out by the
perturbation expansion and renormalization-group �RG�
analysis �16,17�, while it is denied by numerical simulations
�10,11,14,15� and other analyses �9,11–13,18,19�. In three
dimensions �3Ds�, the ferromagnetic �FM� phase appears in-
stead of the KT phase, and the spin-glass �SG� transition for
strongly disordered regime has been confirmed in the gauge
glass systems by numerical simulations �20–23� and RG
analyses �24,25�, which is consistent with experimental ob-
servations �26–28�.

In two dimensions for the pure case, the effect of discrete
spin state on the KT transition has been investigated by the
use of the clock model. José et al. �29� pointed out that
typical successive transitions of paramagnetic �PM�-KT-FM
phases occur when q�5. In random case, exact locations of
multicritical points are conjectured for the random Zq models
by the use of the duality argument with the replica method
�30�. In three dimensions, for the pure Zn model, an RG
analysis has suggested that there exists only one transition
for PM-FM phases and the transition type is XY type �31�.

In the present paper, we investigate the q-state clock GG
models in two and three dimensions. To clarify the effect of
the spin discreteness, we investigate the KT-transition tem-
peratures for q=6, 8, 10, 12, 14, 16, and 1024 cases in two
dimensions and critical exponents for q=6, 8, 16, and 1024
cases in three dimension. The Zq discrete symmetry is im-

posed into the original GG model, and the effect of discrete-
ness, which would be related to frustration phenomena, is
discussed. We find an applicability of the duality equation
partly, which is derived for the random Zq Villain model
�30�.

The nonequilibrium relaxation �NER� analysis is applied
to estimate transition temperatures and critical exponents.
The NER method is an efficient numerical technique for ana-
lyzing equilibrium phase transition �32�. It provides the criti-
cal temperature and critical exponents accurately for second-
order transition systems �33–35� and has been used
successfully to study various problems, including frustrated
and/or random systems �36�. It has also been extended be-
yond second-order transitions; e.g., the KT transition
�35,37,38� and the first-order transition systems �39�. In the
NER analysis, the equilibration step is not necessary. Simu-
lation is made only up to steps when the asymptotic behavior
indicates the equilibrium state. Thus, one can analyze large
systems as compared with equilibrium simulations. This ad-
vantage becomes more effective for slow-relaxation systems.
Since the method is simple and straightforward, it can be
extended to various systems. For the GG model with q=�,
the NER method showed the KT transition along the Nishi-
mori line �40� which reveals the stability of the KT phase
against small disorder.

The organization of the paper is as follows. In Sec. II, the
clock GG model is introduced, and some previous results are
briefly reviewed. In Sec. III, the result in 2D is shown for the
analysis of the KT-transition temperatures. The result in 3D
is shown in Sec. IV for the analysis of the FM critical be-
havior. Section V is devoted for remarks.

II. CLOCK GAUGE GLASS MODELS

We consider two kinds of GG models, which have the
same symmetry, in two dimensions. The first one that we call
the “cosine type” is based on the planar rotator model with
random gauge variables. The second one that we call the
“Villain type” is defined by a piecewise harmonic interaction
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�41�. The Hamiltonian of the cosine-type model is expressed
as

H = − J�
�ij�

cos��i − � j + Aij� , �2.1�

where J�0, the summation �ij� is taken over all nearest-
neighboring sites on the square lattice, �i is the angle of the
rotator spin, and Aij is the random gauge associated with
each pair. For the q-state clock case, each spin takes q dis-
crete values as

�i � �2�ni

q
	ni = 0,1 ¯ q − 1
 . �2.2�

The quenched random variable Aij takes the same values and
obeys the distribution function

P�Aij� = exp�D cos Aij�/ �
��=0

q−1

exp�D cos
2���

q
� , �2.3�

where D is the parameter controlling the strength of random-
ness. The pure case is corresponding to D=�. In the case of
q→�, the model becomes identical with the �continuous�
GG model, which shows the KT transition like the pure XY
�planar rotator� model �38�. It is remarkable that for the pure
case, the q-state clock model in two dimensions shows typi-
cal successive transitions of PM-KT-FM phases when q�5
�29�. In the following, we denote that the PM-KT-transition
temperature is TKT1 and the KT-FM one is TKT2 and tempera-
ture is measured in units of J /kB. The expected phase dia-
gram is shown in Fig. 1, where K=JkBT. For the pure case, it
has been clarified by the NER method for the KT transition
that the upper transition temperatures TKT1 are very close to
the continuous case �q=�� and clock models �finite q’s�,
e.g., TKT1=0.894�4� for q=� and TKT1=0.899�5� for q=6
�38�. For the random case on the Nishimori line �K=D� with
q=�, the NER method showed that TKT1=0.325�6� in cosine
type and TKT1=0.382�12� in Villain-type �TKT2=0 in the con-
tinuous case� �40�, which reveals the stability of the KT
phase against small disorder.

The Nishimori line was originally introduced for the ran-
dom Ising models �42�. It was extended to other gauge sym-
metric models including the gauge glass ones �43�. On this
line, some exact relations are derived between thermody-

namic quantities, which provide a plausible argument that
the multicritical point is located on it.

The function �2.3� is chosen so that the model satisfies the
gauge theory from which various analytic properties are de-
rived �18,19�. We consider that it behaves similarly to the
Gaussian distribution and the difference between them is ir-
relevant, since the same properties are derived by the gauge
theory if one considers the other model, the ”Villain-type”
GG model. This is defined by the local Boltzmann factor
based on the periodic Gaussian potential �41�

exp�− V��i − � j + Aij��

= �
m=−�

�

exp−
K

2
��i − � j + Aij + 2�m�2� , �2.4�

instead of the Hamiltonian �2.1�. The exact location of mul-
ticritical points is conjectured for the random Zq models by
the use of the duality argument with the replica method �30�.
Let us denote the probability of a local gauge being the lth
state as

p��D� � P�Aij =
2��

q
�

= exp�D cos
2��

q
�/ �

��=0

q−1

exp�D cos
2���

q
� .

�2.5�

If the double transition occurs as shown in Fig. 1 on K=D,
the theory yields a condition for two transition points as

− �
�=0

q−1

�p��D1�logq p��D1� + p��D2�logq p��D2�� = 1.

�2.6�

In three dimensions, we consider only the cosine-type GG
model. The expected phase diagram is shown in Fig. 2. The
KT phase does not appear and there exists only one transition
even for finite q’s. For the pure case, this transition has been
pointed out in the XY-universality class for any q cases �31�.

K=D

0

KKT

FM

0 D

PM

FIG. 1. Expected phase diagram of the q-state clock GG model
in two dimensions with q�5. The dashed line indicates the Nishi-
mori line �K=D�.

K=D
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K

0

SG

PM

FM

FIG. 2. Expected phase diagram of the q-state clock GG model
in three dimensions. The dashed line indicates the Nishimori line
�K=D�.
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III. NUMERICAL RESULTS IN TWO DIMENSIONS

Using the NER analysis for KT transitions, we investigate
the GG model of both types for q=6,8 ,10,12,14,16 cases
along the Nishimori line �K=D� where the effect of random-
ness is observed clearly. Since two transition temperatures
are necessary to be distinguished, we perform the scaling
analysis for two temperature regimes. In the NER analysis of
the KT phase, we choose a complete ordered state ��i=0 for
all i� as the initial state and calculate the relaxation of mag-
netization

m�t� �
1

N
�

i

��cos �i�t��� , �3.1�

where �¯� represents the dynamical average, and �¯� is the
average for the disorder. We use the skew boundary condi-
tion �44� for the purpose of efficient calculations. For each q
case, calculations are carried out on a 1001�1000 lattice up
to the observation time 105 Monte Carlo steps �MCS�. About
64 independent runs are performed for the averaging. The
size dependence is checked to be negligible up to this obser-
vation time, when we compare the data with those on a
801�800 lattice. This reveals that the effect of boundary
condition on thermodynamic behaviors is also negligible.

As an example, we show the analysis of the Villain-type
model for q=6 case. The relaxation of m�t� is plotted in Fig.
3. Let us consider the upper transition temperature TKT1.
Similar to the scaling analysis in the equilibrium Monte
Carlo simulation, we cannot distinguish the transition point
and the KT regime from the relaxation behavior directly,
since it always decays in a power law inside the KT phase. It
is much different from the NER analysis for the standard
second-order-transition systems. Due to the critical relax-
ation in the KT phase, it is not apparent whether the observed
power-law behavior stays in a longer time scale. In fact, in
0.48�T�0.51 in Fig. 3, which is higher than the expected
TKT1, the relaxation behavior almost keeps a power law
within the observed time t=1.5�105. In Fig. 3, one can see

a coherent behavior of the relaxation function m�t� in the
regime of 0.48�T�0.57. After the same initial relaxation
time which is about 100 MCS, it decays like in a power law
up to a finite time � then a crossover occurs and it changes to
decay exponentially. The time scale � is called the relaxation
time depending on the temperature. Therefore, it is natural to
expect the scaling form �35� for the PM regime

m�t� = �−	1g�t/�� , �3.2�

where 	1 is the dynamic exponent. We use this scaling form
to estimate TKT1 precisely from the NER function. First, we
estimate ��T� at each temperature using the scaling form
�3.2�. We plot �	1m as a function of t /� in the double-log
scale with independent scaling parameters 	1 and �. In this
fitting, it is somehow easy to decide the best-fit parameters,
since changing the parameter � causes just the parallel trans-
lation of curve. Precisely speaking, since 	1 is a constant
independent of temperature, we first fix 	1 and estimate � at
each temperature. It is repeated for several values of 	1. The
best value for 	1 is determined by minimizing the total
amount of fitting residual. The result with 	1=0.043 is
shown in Fig. 4, where the estimated ��T� is plotted in Fig. 5.
Next, we estimate TKT1 from the estimated ��T�. As T ap-

1

0.1
1 10 100 1000 10000 100000

m
(t

)

t

1

0.85
1 100000

FIG. 3. Relaxation of magnetization m�t� for the Villain-type
model with q=6 in a double-log plot. For temperatures in 0.21
�T�0.28 and 0.48�T�0.57, the data are plotted with an interval
of 
T=0.01 and so do in 0.28�T�0.305 with 
T=0.005, which
are used for the following scaling analysis. The inset is a magnifi-
cation of data for the low-temperature parts.
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FIG. 4. Scaling plot of m�t� for the q=6 case in 0.48�T
�0.57 fitted using Eq. �3.2� with appropriately chosen ��T� and
	1=0.043.
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FIG. 5. Relaxation time for q=6 case for T�TKT1 in units of �
at T=0.57. The points fitted to Eq. �3.3� with TKT1=0.435.
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proaches TKT1, the correlation length diverges exponentially

as �� ã exp�b̃ /�	T−TKT1	� �3,45�. We expect that the relax-
ation time diverges in the same way,

��T� = a exp�b/�	T − TKT1	� , �3.3�

instead of a power-law divergence in standard second-order
transitions. This is reasonable if one assumes the relation �
��z with a definite value of z. Using the �2 fitting with
parameters a, b, and TKT1, we obtain the best fit as shown in
Fig. 5 with TKT1=0.435�12�. Note that the error bar of TKT1
�and TKT2� in the present investigation is estimated from the
fitting quality of � like for the plot in Fig. 5. In order to
estimate the actual error bars, we have to examine also the
fitting quality of the magnetization �Fig. 4�, which is a diffi-
cult task. This fact has to be especially kept in mind.

A similar analysis can be made for the lower transition
point TKT2 with TKT2 and 	2 replaced by TKT1 and 	1 in Eqs.
�3.2� and �3.3�. The scaling fit for the data in 0.21�T
�0.305 is shown in Fig. 6 with ��T� plotted in Fig. 7 and
	2=0.012. Using the �2 fitting Eq. �3.3� with parameters a,
b, and TKT2, we obtain the best fit as shown in Fig. 7 with
TKT2=0.353�27�.

For other q cases, we show the results summarized in
Table I together with the previously obtained q=1024 con-
sidered as q=� �continuous case�. The q-dependence of TKT1
and TKT2 are shown in Fig. 8. This figure shows that the
PM-KT-transition temperatures TKT1 are very close �T
�0.430� irrespective of q �46� and the KT-FM transition
temperatures TKT2 are proportional to 1 /q2. The q-state clock
model has the energy discreteness which is impassable in the
low temperature. Because it turns out that the energy dis-
creteness depends on 1 /q2, KT-FM transition temperatures
TKT2 are also linear 1 /q2.

The same analysis is applied to the cosine-type model.
The relaxation of m�t� for q=6 case is plotted in Fig. 9. The
scaling plot of the data in 0.37�T�0.45 fitted to Eq. �3.2�
with 	1=0.042 is shown in Fig. 10. The fitting to Eq. �3.3� is
shown with TKT1=0.338�2� in Fig. 11. We also estimate 	2
=0.011 in Fig. 12 and TKT2=0.302�5� in Fig. 13. The same
analysis is made for other q cases. The results are summa-
rized in Table II. The q dependence of TKT1 and TKT2 is
shown in Fig. 14. As observed for the Villain-type case
above, for the cosine-type case, we also find that the upper
critical temperatures TKT1 are very close �T�0.320� to the

TABLE I. Summary of estimated transition temperatures TKT1

and TKT2 and corresponding dynamical exponents 	1 and 	2 for the
Villain-type model. The temperature is measured in units of J /kB.
The conjectures from the duality equations are also listed; T2

D is the
lower transition temperature calculated from Eq. �2.6� with the
present estimation of TKT1 assumed.

q TKT1 	1 TKT2 	2 T2
D

6 0.435�12� 0.043 0.353�27� 0.012 0.357

8 0.434�12� 0.047 0.193�21� 0.007 0.200

10 0.435�16� 0.048 0.134�6� 0.005 0.127

12 0.424�7� 0.046 0.096�5� 0.004 0.090

14 0.421�10� 0.045 0.069�2� 0.003 0.067

16 0.429�10� 0.047 0.050�2� 0.003 0.050

¯

� 0.429�10� 0.045 0

1.02

1

0.98
10-1 1 10 102 103 104 105

τλ 2
m

(t
)

t/τ

λ2 = 0.012

FIG. 6. Scaling plot of m�t� for the q=6 case in 0.21�T
�0.305 fitted using Eq. �3.2� with appropriately chosen ��T� and
	2=0.012.
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FIG. 7. Relaxation time for q=6 case for T�TKT2 in units of �
at T=0.21. The points fitted to Eq. �3.3� with TKT2=0.353.
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FIG. 8. 1 /q2 dependence of TKT1, TKT2, and T2
D for the Villain-

type GG model.
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one in the continuous case, and the lower transition tempera-
tures TKT2 are proportional to 1 /q2.

Next, let us check the duality �2.6�. In Table I for the
Villain case, we have listed two lower temperatures: the one
is TKT2 estimated by the NER method and the other is T2

D

calculated from Eq. �2.6� with the presently obtained upper
transition temperature TKT1 substituted. They are almost
identical with each other �see Fig. 8�. This indicates the ap-
plicability of Eq. �2.6� obtained by the duality theory
�30,47,48�. On the other hand, for the cosine-type, for which
the results are summarized in Table II, we also calculated the
lower transition temperature T2

D from Eq. �2.6� with the pres-
ently obtained upper transition temperature TKT1 substituted.
They are almost identical with each other too �see Fig. 14�.
Although the cosine-type model is not self-dual, it suggests
that the deviation from the self-duality is irrelevant for the
amount of the transition temperature.

IV. NUMERICAL RESULTS IN THREE DIMENSIONS

We analyze the q-state clock GG model in three dimen-
sions for q=6,8 ,16 cases along the Nishimori line �K=D�. It

is expected that the GG model in three dimensions shows the
PM-FM phase transition. We denote Tc as the PM-FM tran-
sition temperature. In the NER analysis �32�, we choose a
complete ordered state ��i=0 for all i� as the initial state. We
expect that m�t� decays exponentially to zero in the PM
phase and so does algebraically at the transition point. In the
FM phase, it decays to the spontaneous value meq exponen-
tially. The asymptotic behavior of magnetization m�t� is sum-
marized as

m�t� � �exp�− t/�� �T � Tc� ,

t−	m �T = Tc� ,

meq �T  Tc� ,
� �4.1�

where � is the relaxation time and 	m is the dynamical ex-
ponent which characterizes the power-law decay of the mag-
netization at the critical point. To see the asymptotic power-
law decay of the NER function m�t� clearly, we usually
analyze its logarithmic derivative,

	m�t� � −
d log m�t�

d log t
, �4.2�

which is practically more convenient. We call it the local
exponent �of m�t��. It is noted that the dynamical function

TABLE II. Summary of estimated transition temperatures TKT1

and TKT2 and corresponding dynamical exponents 	1 and 	2 for the
cosine-type model. The temperature is measured in units of J /kB.
The conjectures from the duality equations are also listed; T2

D is the
lower transition temperature calculated from Eq. �2.6� with the
present estimation of TKT1 assumed.

q TKT1 	1 TKT2 	2 T2
D

6 0.338�2� 0.042 0.30�5� 0.011 0.310

8 0.319�8� 0.044 0.187�4� 0.007 0.194

10 0.325�6� 0.046 0.117�4� 0.004 0.126

12 0.321�4� 0.044 0.087�3� 0.003 0.090

14 0.322�5� 0.045 0.068�1� 0.003 0.067

16 0.312�8� 0.042 0.051�2� 0.002 0.053

¯

� 0.322�6� 0.050 0

1
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m
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FIG. 9. The relaxation of magnetization m�t� for the cosine-type
model with q=6 in double-log plot. For temperatures in 0.19�T
�0.24 and 0.37�T�0.45, the data are plotted with an interval of

T=0.01 and so do in 0.24�T�0.27 with 
T=0.005, which are
used for the following scaling analysis. The inset is a magnification
of data for the low-temperature parts.
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FIG. 10. Scaling plot of m�t� for the q=6 case in 0.37�T
�0.45 fitted using Eq. �3.2� with appropriately chosen ��T� and
	1=0.042.
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FIG. 11. Relaxation time for q=6 case for T�TKT1 in units of �
at T=0.45. The points fitted to Eq. �3.3� with TKT1=0.338.
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	m�t� should be distinguished from the exponent 	m which is
time independent. We will use the same convention for other
exponents. Let us examine three typical behaviors in Eq.
�4.1�. When t goes to infinity, we obtain the asymptotic be-
havior

	m�t� → �� �T � Tc� ,

	m �T = Tc� ,

0 �T  Tc� .
� �4.3�

To estimate the transition temperature Tc, the NER method
provides a simple procedure for standard second-order tran-
sition cases. In principle, Eq. �4.1� or equivalently Eq. �4.3�
which is more practical is used to identify the phase at each
temperature.

As an example, we show the NER analysis for the six-
state clock GG model in three dimensions. The result is plot-
ted in Fig. 15. Calculations are carried out on a 101�101
�100 lattice up to the observation time 2000�30 000 MCS.
About 64 independent runs are performed for averaging in
0.3�T�1.0 and 512�2048 independent runs are per-
formed for averaging in 0.78�T�0.79. By careful observa-
tion, one can find the difference of asymptotic behavior; one

is slightly bending up indicating the asymptotic saturation in
the FM phase and one is bending down indicating the expo-
nential decay in the PM phase. To estimate more accurate Tc,
we plot local exponent 	m�t� versus 1 / t in Fig. 16. As shown
in Eq. �4.3�, at the critical point where m�t� decays to zero
algebraically, the local exponent 	m�t� approaches a finite
value in the limit of 1 / t=0. It is clearly seen in Fig. 16 that
the curve turns down at T=0.783 for 1 / t→0 and turns up at
T=0.787, which is consistent with the above direct observa-
tion for m�t�. This provides the estimation of the transition
temperature as Tc=0.785�2�.

We also estimate the critical exponents. The simulation is
performed at the temperature Tc=0.785 estimated in Fig. 16.
Calculations are carried out on a 51�51�50 lattice up to
the observation time 1000 MCS. About 1.6�106 indepen-
dent runs are used for the statistical averaging. We use the
NER functions of fluctuations below,

	mm�t� = N �m�t�2�
�m�t��2 − 1� � t	mm, �4.4�

1.03
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)
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λ2 = 0.011

FIG. 12. Scaling plot of m�t� for the q=6 case in 0.19�T
�0.27 fitted using Eq. �3.2� with appropriately chosen ��T� and
	1=0.011.
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FIG. 13. Relaxation time for q=6 case for T�TKT2 in units of �
at T=0.19. The points fitted to Eq. �3.3� with TKT2=0.302.
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FIG. 14. 1 /q2 dependence of TKT1, TKT2, and T2
D for the cosine-

type GG model.
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FIG. 15. The relaxation of magnetization m�t� for the six-states
GG model in three dimensions in double-log plot. For temperatures
in 0.3�T�1.0, the data are plotted with an interval of 
T=0.1 and
so do in 0.7�T�0.8 with 
T=0.01.
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	me�t� = N �m�t�e�t��
�m�t���e�t��

− 1� � t	me, �4.5�

which are convenient for the estimation of individual expo-
nents, where e�t� is the energy per site at time t. Following
the local exponent for the order parameter in Eq. �4.2�, it is
convenient to define local exponents for NER functions of
fluctuations �32�

	mm�t� =
d log fmm�t�

d log t
, �4.6�

	me�t� =
d log fme�t�

d log t
. �4.7�

The dynamical exponents are also expressed as

	mm =
d

z
, �4.8�

	me =
1

z�
. �4.9�

The dynamical exponent 	m which characterizes the power-
law decay of the magnetization at the critical point is ex-
pressed as

	m =
�

z�
. �4.10�

The local exponents corresponding to relations �4.8�, �4.9�,
and �4.10� are defined as

z�t� =
d

	mm�t�
, �4.11�

��t� =
	mm

d	me�t�
, �4.12�

��t� =
	m�t�
	me�t�

, �4.13�

by which one can estimate each exponent directly from a
plot versus 1 / t like Fig. 16. The results are shown in Figs.
17–19. Estimating the values for t→�, i.e., 1 / t=0, we ob-
tain z=3.163, �=0.731, and �=0.321 from each figure.
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FIG. 16. The behavior of the local exponent 	�t� for the six-
states GG model in three dimensions is plotted for T
=0.783,0.785,0.787.
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The same analysis is made for other q cases. The results
are summarized in Table III. We found that the spin discrete-
ness is irrelevant, and the transition belongs to the same uni-
versality class as in the �continuous� XY case in spite of the
discrete energy spectrum. This is the same behavior as men-
tioned in the pure case �31�.

V. REMARKS

We have performed the NER analysis of KT transition for
the q-state clock GG model with q=6, 8, 10, 12, 14, 16, and
1024 in two dimensions. Since the successive transitions of
FM-KT-PM type are expected as in the pure clock model,

two kinds of scaling plot are applied to distinguish them. The
results are summarized in Table I for the Villain-type and in
Table II for the cosine-type. For both models, it is found that
the same type of successive transitions and almost the same
upper critical temperature as in the continuous case are ob-
served for all cases. The lower transition temperatures TKT2
are linear in 1 /q2. This indicates that the behavior is the
same as in the pure case, and the phase diagram is like in
Fig. 1 as expected. The results for the Villain-type model are
consistent with the duality relation �2.6� �30� in the present
accuracy. Similar behaviors are observed for the cosine type,
while the model is not self-dual. This would be investigated
in the future.

We have also performed the NER analysis of second-
order transition and critical exponents for the q-state clock
GG model with q=6, 8, 16, and 1024 in three dimensions.
The results are summarized in Table III. It is found that the
spin discreteness is irrelevant, and the transition belongs to
the same universality class as in the �continuous� XY case.
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